In this paper, we give a brief introduction to nanotechnology and then clarify the technical issues involved in applying it in the conceptually simplest and most powerful fashion to the repair of frozen tissue.

Broadly speaking, the central thesis of nanotechnology is that almost any structure consistent with the laws of chemistry and physics that can be specified can in fact be built.

This possibility was first advanced by Richard Feynman in 1959 [4] when he said: "The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom".(Feynman won the 1965 Nobel prize in physics)

SEE this Introduction Paper nanotechnology

About Nanotechnology

Nanotechnology draws its name from the prefix "nano". A nanometer is one-billionth of a meter—a distance equal to two to twenty atoms (depending on what type of atom) laid down next to each other. Nanotechnology refers to manipulating the structure of matter on a length scale of some small number of nanometers, interpreted by different people at different times as meaning anything from 0.1 nm (controlling the arrangement of individual atoms) to 100 nm or more (anything smaller than micro-technology). Richard Feynman was the first scientist to suggest (in 1959) that devices and materials could someday be fabricated to atomic specifications. "The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom." This concept was expanded and popularized in a 1986 book Engines of Creation by K Eric Drexler, who applied the term nanotechnology to Feynman's vision.

The term "nano-technology" had been coined in 1974 by Norio Taniguichi to describe semiconductor processes involving control on the order of a nanometer. From the mid-1980s on progress in nanometer-scale science and technology exploded, and the term nanotechnology was appropriated by researchers, media, businesses, and funding agencies to refer to any technology in which control of the structure of matter on a scale of nanometers to tens of nanometers to hundreds of nanometers in at least one dimension enabled unique phenomena and novel applications.

The Foresight Institute is still focused on the original meaning of the term: atomically-precise manufacturing or "molecular manufacturing". Nevertheless, incremental progress in nanometer-scale science and technology expands the tool kit that can be used to develop atomically-precise manufacturing, and provides benefits to encourage further investment in nanotechnology.

For the General Reader

Nanotechnology is a group of emerging technologies in which the structure of matter is controlled at the nanometer scale, the scale of small numbers of atoms, to produce novel materials and devices that have useful and unique properties. Some of these technologies impose only limited control of structure at the nanometer scale, but they are already in use, producing useful products. They are also being further developed to produce even more sophisticated products in which the structure of matter is more precisely controlled. The Foresight Nanotechnology Challenges focus on applying these developing technologies to solving important world problems.

Foresight was founded on an interest in the capabilities that await at the end of this development process, when advanced nanotechnology will enable construction of complex systems in which each individual atom is specified and serves a designed function in the system. To read about these capabilities and their consequences:

Introductions to Nanotechnology for the General Reader

For the Technical Reader

Technical introductions to advanced nanotechnology have emphasized theoretical studies of what our current knowledge of physics and chemistry tells us about the kinds of systems we will eventually be able to build as our ability to control the structure of matter at the nanometer scale increases. Although the best path from current experimental abilities to building advanced systems is not yet clear, several authors have described some good possibilities.

Introductions to Nanotechnology for the Technical Reader

Nanotechnology FAQs

What is Nanotechnology?

What is Molecular Manufacturing?

Nanotechnology FAQ for Students

Molecular Manufacturing

Molecular manufacturing is the name given to the proposal that molecular machine systems will eventually be able to manufacture most objects, including large objects, from the molecule up, building complex products with atomic precision.
The proposal that advanced nanotechnology will include artificial molecular machine systems capable of building complex systems to atomic precision has been controversial within the scientific community. In general, proponents have argued from the grounds of theoretical analysis coupled with the existence of multiple plausible implementation pathways from current technology, while opponents have been unimpressed with theoretical arguments in the absence of direct experimental demonstration of crucial milestones.

What is Molecular Manufacturing?

Feasibility of Molecular Manufacturing

Technology Roadmap for Productive Nanosystems

Foresight's Standards Work for Molecular Nanosystems

Ralph Merkle

An introduction to Molecular Nanotechnology Ralph Merkle, a leading expert in nanotechnology, gives a non-technical introduction to nanotechnology and the future of manufacturing at the atomic level. From the inaugural Executive Program at Singularity University ( See this Video presentation

See Ralph Merkle's Introduction to Molecular Nanotechnology from Singularity University.

The next few paragraphs provide a brief introduction to the core concepts of nanotechnology, followed by links to further reading.

Manufactured products are made from atoms. The properties of those products depend on how those atoms are arranged.

If we rearrange the atoms in coal we can make diamond.

If we rearrange the atoms in sand (and add a few other trace elements) we can make computer chips.

If we rearrange the atoms in dirt, water and air we can make potatoes.

Todays manufacturing methods are very crude at the molecular level. Casting, grinding, milling and even lithography move atoms in great thundering statistical herds. It's like trying to make things out of LEGO blocks with boxing gloves on your hands. Yes, you can push the LEGO blocks into great heaps and pile them up, but you can't really snap them together the way you'd like.

In the future, nanotechnology (more specifically, molecular nanotechnology or MNT) will let us take off the boxing gloves. We'll be able to snap together the fundamental building blocks of nature easily, inexpensively and in most of the ways permitted by the laws of nature. This will let us continue the revolution in computer hardware to its ultimate limits: molecular computers made from molecular logic gates connected by molecular wires. This new pollution free manufacturing technology will also let us inexpensively fabricate a cornucopia of new products that are remarkably light, strong, smart, and durable.

"Nanotechnology" has become something of a buzzword and is applied to many products and technologies that are often largely unrelated to molecular nanotechnology. While these broader usages encompass many valuable evolutionary improvements of existing technology, molecular nanotechnology will open up qualitatively new and exponentially expanding opportunities on a historically unprecedented scale. We will use the word "nanotechnology" to mean "molecular nanotechnology".

Nanotechnology will let us:

• Achieve the ultimate in precision: almost every atom in exactly the right place.

• Make complex and molecularly intricate structures as easily and inexpensively as simple materials.

• Reduce manufacturing costs to little more than the cost of the required raw materials and energy.

While technologies that lack one or more of these characteristics can be quite valuable, by definition they are not molecular nanotechnology. Molecular nanotechnology will let us build new and entirely novel molecular machines, like the planetary gear illustrated at left. Molecular nanotechnology will be the physical foundation for the Singularity.

There are two more concepts commonly associated with nanotechnology:

Positional assembly.

Massive parallelism.

Clearly, we would be happy with any method that simultaneously achieved the first three objectives. However, this seems difficult without using some form of positional assembly (to get the right molecular parts in the right places) and some form of massive parallelism (to keep the costs down).

The need for positional assembly implies an interest in molecular robotics, e.g., robotic devices that are molecular both in their size and precision. These molecular scale positional devices are likely to resemble very small versions of their everyday macroscopic counterparts because both the macroscopic and the microscopic versions are trying to achieve the same objectives: the ability to flexibility and accurately hold, position and assemble parts. Positional assembly is frequently used in normal macroscopic manufacturing today, and provides tremendous advantages. Imagine trying to build a bicycle with both hands tied behind your back! The idea of manipulating and positioning individual atoms and molecules is still new and takes some getting used to. However, as Feynman said in a classic talk in 1959: "The principles of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom." We need to apply at the molecular scale the concept that has demonstrated its effectiveness at the macroscopic scale: making parts go where we want by putting them where we want.

A few robotic arms assembling molecular parts are going to take a long time to assemble anything large — so we need lots of robotic arms: this is what we mean by massive parallelism. While earlier proposals achieved massive parallelism through self replication, today's "best guess" is that future molecular manufacturing systems will use some form of convergent assembly. In this process vast numbers of small parts are assembled by vast numbers of small robotic arms into larger parts, those larger parts are assembled by larger robotic arms into still larger parts, and so forth. If the size of the parts doubles at each iteration, we can go from one nanometer parts (a few atoms in size) to one meter parts (almost as big as a person) in only 30 steps. In this way, a nanofactory with many robotic arms in it can manufacture another nanofactory in a reasonable period of time.

Robert A. Freitas Jr.

"The extraordinary medical prospects ahead of us have renewed interest in a proposal made long ago: that the dying patient could be frozen, then stored at the temperature of liquid nitrogen for decades or even centuries until the necessary medical technology to restore health is developed. Called cryonics, this service is now available from several companies. Because final proof that this will work must wait until after we have developed a medical technology based on the foundation of a mature nanotechnology, the procedure is experimental. We cannot prove today that medical technology will (or will not) be able to reverse freezing injury 100 years from now. But given the wonderful advances that we see coming, it seems likely that we should be able to reverse freezing injury — especially when that injury is minimized by the rapid introduction through the vascular system of cryoprotectants and other chemicals to cushion the tissues against further injury."

(Nanomedicine, Volume I, p. 379)

Nanomedicine, Volume IIA: Biocompatibility by Robert A. Freitas Jr. is now available in hardcover for $99 + shipping. Click here to purchase the book at or click here for information or to purchase the book directly from Landes Bioscience.

Nanomedicine, Volume I: Basic Capabilities by Robert A. Freitas Jr. is now available in softcover for $89 + shipping. Click here for information or to purchase the book directly from Landes Bioscience.

About Nanomedicine (the field)

Molecular nanotechnology has been defined as the three-dimensional positional control of molecular structure to create materials and devices to molecular precision. The human body is comprised of molecules, hence the availability of molecular nanotechnology will permit dramatic progress in human medical services. More than just an extension of "molecular medicine," nanomedicine will employ molecular machine systems to address medical problems, and will use molecular knowledge to maintain and improve human health at the molecular scale. Nanomedicine will have extraordinary and far-reaching implications for the medical profession, for the definition of disease, for the diagnosis and treatment of medical conditions including aging, and ultimately for the improvement and extension of natural human biological structure and function.

"Nanomedicine is the preservation and improvement of human health using molecular tools and molecular knowledge of the human body."

The Molecular Repair of the Brain

The following link to the discussion and research source material is advanced reading for these seeking an extensive topic discussion.

The Molecular Repair of the Brain which discusses repair technologies that are clearly feasible in principle. Also, see: Cryo-probability which discusses the chances of success